Substrate Binding in the FAD-Dependent Hydroxynitrile Lyase from Almond Provides Insight into the Mechanism of Cyanohydrin Formation and Explains the Absence of Dehydrogenation Activity†,‡

نویسندگان

  • Ingrid Dreveny
  • Aleksandra S. Andryushkova
  • Anton Glieder
  • Karl Gruber
  • Christoph Kratky
چکیده

In a large number of plant species hydroxynitrile lyases catalyze the decomposition of cyanohydrins in order to generate hydrogen cyanide upon tissue damage. Hydrogen cyanide serves as a deterrent against herbivores and fungi. In vitro hydroxynitrile lyases are proficient biocatalysts for the stereospecific synthesis of cyanohydrins. Curiously, hydroxynitrile lyases from different species are completely unrelated in structure and substrate specificity despite catalyzing the same reaction. The hydroxynitrile lyase from almond shows close resemblance to flavoproteins of the glucose-methanol-choline oxidoreductase family. We report here 3D structural data of this lyase with the reaction product benzaldehyde bound within the active site, which allow unambiguous assignment of the location of substrate binding. Based on the binding geometry, a reaction mechanism is proposed that involves one of the two conserved active site histidine residues acting as a general base abstracting the proton from the cyanohydrin hydroxyl group. Site-directed mutagenesis shows that both active site histidines are required for the reaction to occur. There is no evidence that the flavin cofactor directly participates in the reaction. Comparison with other hydroxynitrile lyases reveals a large diversity of active site architectures, which, however, share the common features of a general active site base and a nearby patch with positive electrostatic potential. On the basis of the difference in substrate binding geometry between the FAD-dependent HNL from almond and the related oxidases, we can rationalize why the HNL does not act as an oxidase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes...

متن کامل

Archives of Biochemistry and Biophysics

active HNLs lacking FAD are found in some cyanogenic a-Hydroxynitrile lyase (HNL, acetone-cyanohydrin plants, e.g., flax, sorghum, rubber tree, and cassava. lyase, EC 4.1.2.37) was purified to homogeneity from Both types of HNLs show substrate specificity for eipetioles of cassava (Manihot esculenta Crantz). The puther aromatic or aliphatic cyanohydrins. rified HNL is a homotetramer with a subu...

متن کامل

Hydroxynitrile Lyases, Interesting Biocatalysts in Stereoselective Organic Syntheses

Hydroxynitrile lyases (HNLs) from Prunus amygdalus (PaHNL), Sorghum bicolor (SbHNL), Manihot esculenta (MeHNL) and Hevea brasiliensis (HbHNL) are excellent biocatalysts for the preparation of optically active cyanohydrins. (R)as well as (S)-cyanohydrins are obtained in high optical and chemical yields. The synthetic potential of the now easily available optically pure cyanohydrins is demonstrat...

متن کامل

Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases - a review.

The first enantioselective synthesis was the selective addition of cyanide to benzaldehyde catalysed by a hydroxynitrile lyase (HNL). Since then these enzymes have been developed into a reliable tool in organic synthesis. HNLs to prepare either the (R)- or the (S)-enantiomer of the desired cyanohydrin are available and a wide variety of reaction conditions can be applied. As a result of this, n...

متن کامل

The Effect of Alkali Metal Promoters on the Stability and Coke Formation of Platinum-Based Propane Dehydrogenation Catalysts: A Kinetic Study

The kinetics of catalyst deactivation and coke formation during dehydrogenation of propane over supported Pt–based catalysts and, in particular, the effect of alkali metal promoters on catalyst activity and stability were studied. The analysis of propane conversion data showed that there is an optimum level of alkali metal promoter loading for both catalyst activity and stability.A model ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2009